Abstract

Surface-initiated controlled radical polymerization is a powerful strategy to tailor the chemical and physical surface properties of materials. This article highlights recent work from the author's laboratory in which surface-initiated atom transfer radical polymerization is used to generate biofunctional and biomimetic surface coatings. Three examples will be discussed. The first two examples are based on the surface-initiated atom transfer radical polymerization of 2-hydroxyethyl methacrylate and (polyethylene glycol) methacrylate, which generates a polymer brush that suppresses non-specific adhesion of proteins and cells. These non-fouling brushes have been used to generate protein microarrays and to produce coatings that can promote endothelialization of implantable biomaterials. The third example describes the use of polyelectrolyte brushes as matrices to direct the mineralization of calcium carbonate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.