Abstract
This research is focused on the feasibility of biofuel from water hyacinth mixed with cassava starch sediment by biological and physical conversion processes and the comparison of the gross electricity production in these processes. The biological conversion process produced biomethane by anaerobic digestion. The optimal conditions of biomethane production were a ratio of water hyacinth and cassava starch sediment at 25:75, initial pH of 7.5, thermophilic temperature (55 ± 2°C) and C/N ratio of 30. The maximum biomethane yield measured was 436.82 mL CH4 g chemical oxygen demand (COD)-1 and the maximum COD removal was 87.40%. The physical conversion process was bio-briquette. It was found that the ratios of water hyacinth and cassava starch sediment at 10:90, 20:80, 30:70, 40:60 and 50:50 were the best ratio of fuel properties and close to the Thai Community Product Standard, with heating values of 15.66, 15.43, 15.10, 14.88 and 14.58 MJ kg-1, respectively. Moreover, results showed that the gross electricity production of the biological conversion process (biomethane) was 3.90 kWh and the gross electricity production of the physical conversion process (bio-briquette) from the ratios of water hyacinth and cassava starch sediment at 10:90, 20:80, 30:70, 40:60 and 50:50 were 1.52, 1.50, 1.47, 1.45 and 1.42 kWh, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Waste Management & Research: The Journal for a Sustainable Circular Economy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.