Abstract

Here we present unequivocal experimental proof that microscale cofactor- and membrane-less, direct electron transfer based enzymatic fuel cells do produce significant amounts of electrical energy in human lachrymal liquid (tears). 100μm diameter gold wires, covered with 17nm gold nanoparticles, were used to fashion three-dimensional nanostructured microelectrodes, which were biomodified with Corynascus thermophilus cellobiose dehydrogenase and Myrothecium verrucaria bilirubin oxidase as anodic and cathodic bioelements, respectively. The following characteristics of miniature glucose/oxygen biodevices operating in human tears were registered: 0.57V open-circuit voltage, about 1μWcm−2 maximum power density at a cell voltage of 0.5V, and more than 20h operational half-life. Theoretical calculations regarding the maximum recoverable electrical energy can be extracted from the biofuel and the biooxidant, glucose and molecular oxygen, each readily available in human lachrymal liquid, fully support our belief that biofuel cells can be used as electrical power sources for so called smart contact lenses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call