Abstract

Micronutrient deficiency, often termed "hidden hunger," is a significant global health issue affecting over three billion people worldwide. Given that wheat is a primary staple grain in many developing countries, it is crucial to focus on enhancing its nutritional content, as it often lacks essential micronutrients. Biofortification offers a promising solution to this problem by increasing the levels of key nutrients in the edible parts of crops through both agronomic and genetic approaches. This article examines the potential of biofortification in wheat, targeting vital micronutrients like iron and zinc. By employing traditional breeding methods alongside modern genetic techniques such as genome sequencing, Quantitative Trait Locus (QTL) mapping, and Genome Wide Association Studies (GWAS), researchers aim to boost the bioavailability and concentration of these nutrients in wheat varieties. The genetic variability observed in wild wheat relatives plays a significant role in identifying traits that can enhance the nutritional profile of wheat. The benefits of biofortified wheat are numerous, especially for resource-limited consumers who rely heavily on cereal-based diets. Increased concentrations of iron and zinc in wheat could improve the health and well-being of these populations, helping to combat hidden hunger on a global scale. This review paper provides a comprehensive overview of the current state of agronomic and genetic strategies for wheat biofortification, with a specific focus on increasing zinc and iron content in wheat grains. It discusses the progress made in biofortification research and outlines the various breeding approaches and genetic tools used to enhance wheat's nutritional content. By leveraging these strategies, wheat biofortification has the potential to address micronutrient deficiencies and contribute to improved public health outcomes worldwide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.