Abstract

Plant-derived bioflavonoids have been recognized to support arterial wall structural integrity and interfere with a variety of proatherosclerotic stimuli. In this study we tested the effects of bioflavonoids on the contractile activity of cultured human aortic smooth muscle cells (SMC) embedded in a 3-dimensional type I collagen matrix. Collagen I solution mixed with human aortic SMC in 24-well plates were allowed to form gels. Tested compounds were added to the wells, and the gels were set afloat by gentle tapping. Digital photographs of the gels were taken after 24 hours of incubation at 37 degrees C. The area of contracted gel was measured and expressed as a percentage of the control gel area from 3 or more replicates. Expression of matrix metalloproteinase (MMP-2) in conditioned media was assessed by gel zymography. Different classes of bioflavanoids showed variable efficiency in inhibiting angiotensin II (ATII)-dependent collagen gel contraction by SMCs. An increase in the number of gallate groups per catechin molecule was associated with increased inhibition of angiotensin II-dependent collagen gel contraction by SMC. Antioxidants (N-acetyl cysteine and ascorbic acid) did not inhibit collagen gel contraction. Bioflavonoid inhibition of collagen gel contraction by SMC correlated with inhibition of matrix metalloproteinase-2 expression. Bioflavonoids participate in the regulation of SMC-mediated contraction and have a strong potential in counteracting pathophysiological effects of ATII. Bioflavonoid activity depends on structural characteristics and can be related to extracellular matrix integrity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.