Abstract

Assuming the projected increase in use of ethanol as a biofuel, the current study was conducted to compare the biofiltration efficiencies for plain and 25% ethanol-containing gasoline. Two biofilters were operated in a downflow mode for 7 months, one of them being compost-based whereas the other using a synthetic packing material, granulated tire rubber, inoculated with gasoline-degrading microorganisms. Inlet concentrations measured as total hydrocarbon (TH) ranged from 1.9 to 5.8 g m−3 at a constant empty bed retention time of 6.84 min. Contrary to the expectations based on microbiological considerations, ethanol-amended gasoline was more readily biodegraded than plain hydrocarbons, with the respective steady state elimination capacities of 26–43 and 14–18 gTH m−3 h−1 for the compost biofilter. The efficiency of both biofilters significantly declined upon the application of higher loads of plain gasoline, yet immediately recovering when switched back to ethanol-blended gasoline. The unexpected effect of ethanol in promoting gasoline biodegradation was explained by increasing hydrocarbon partitioning into the aqueous phase, with mass transfer being rate limiting for the bulk of components. The tire rubber biofilter, after a long acclimation, surpassed the compost biofilter in performance, presumably due to the ‘buffering’ effect of this packing material increasing the accessibility of gasoline hydrocarbons to the biofilm. With improved substrate mass transfer, biodegradable hydrocarbons were removed in the tire rubber biofilter's first reactor stage, with most of the remaining poorly degradable smaller-size hydrocarbons being degraded in the second stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.