Abstract
Biofilm-producing bacteria can decrease Cd uptake in vegetables, but mechanisms underlying this effect are poorly characterized. In this study, two mutant strains B12ΔYwcc and B12ΔSlrR were constructed from a biofilm-producing Bacillus subtilis strain B12. Then, the impacts of strain B12 and its high biofilm-producing mutant strain B12ΔYwcc and low biofilm-producing mutant strain B12ΔSlrR on Cd availability and uptake in Chinese cabbage and the related mechanisms were investigated in the Cd-polluted soil. Strain B12 and its mutants B12ΔYwcc and B12ΔSlrR increased the dry biomasses of edible tissues by 54%–130% compared with the controls. Strain B12 and its mutant B12ΔYwcc reduced the soil available Cd content by 36%–50% and root and edible tissue Cd contents by 23%–50% compared with the controls. Furthermore, the mutant strain B12ΔYwcc reduced the edible tissue Cd content by 40% and increased the polysaccharide content by 23%, invertase activity by 139%, and gene copies of the cumA by 4.5-fold, epsA by 7.1-fold, and cadA by 4.3-fold, which were involved in Cd adsorption in the rhizosphere soils, respectively, compared with strain B12. The polysaccharide content and cumA, epsA, and cadA gene copy numbers showed significantly reverse correlations with the available Cd content. Notably, the mutant strain B12ΔYwcc showed better ability to colonize the vegetable root surface than strain B12. These findings demonstrated that the biofilm-overproducing mutant strain B12ΔYwcc increased the polysaccharide production and Cd-immobilizing related cumA, epsA, and cadA gene copies, resulting in lower Cd availability and accumulation in Chinese cabbage in the Cd-polluted soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.