Abstract

The macrostructure development of biofilms grown in a lab-scale rotating biological contactor was monitored by analyzing the average opacity and the texture of gray-level images of the discs. The reactor was fed with municipal or synthetic wastewater. Experiments lasted on average 4-14 weeks. The images were obtained with a flat-bed scanner. The opacity and its standard deviation are directly extracted from the annular zone where the biofilm develops. This zone is defined by the outer edge of the disc and the waterline. The spatial gray-level dependence matrix (SGLDM) approach was used for the texture assessment. As this method requires rectangular images, a geometrical transformation had to be developed to transform the ring into a workable area. This transformation now allows quantitative image analysis on circular biofilms. As a last step, Principal Components Analysis was applied to the set of textural descriptors to reduce the number of textural parameters. Opacity and textural information allowed the non-intrusive monitoring of the growth/regrowth of the biofilms as well as biofilm loss, due to detachment, auto-digestion, or protozoan grazing. Textural description was very valuable by helping to discriminate biofilms of similar opacity characteristics but presenting different macrostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.