Abstract

Quorum sensing (QS), the communication signaling network, regulates biofilm formation and several virulence factors in Pseudomonas aeruginosa PAO1, a nosocomial opportunistic pathogen. QS is considered to be a challenging target for compounds antagonistic to virulent factors. Biologically synthesized silver nanoparticles (AgNPs) are reported as anti-QS and anti-biofilm drugs against bacterial infections. The present study reports on the synthesis and characterization of Piper betle (Pb) mediated AgNPs (Pb-AgNPs). The anti-QS activity of Pb-AgNPs against Chromobacterium violaceum and the potential effect of Pb-AgNPs on QS-regulated phenotypes in PAO1 were studied. FTIR analysis exhibited that Pb-AgNPs had been capped by phytochemical constituents of Pb. Eugenol is one of the active phenolic phytochemicals in Pb leaves, therefore molecular docking of eugenol-conjugated AgNPs on QS regulator proteins (LasR, LasI and MvfR) was performed. Eugenol-conjugated AgNPs showed considerable binding interactions with QS-associated proteins. These results provide novel insights into the development of phytochemically conjugated nanoparticles as promising anti-infective candidates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call