Abstract

The biofilm nature of bacterial infections on orthopedic implants imparts antibiotic tolerance, which means that these infections often cannot be successfully treated with systemic antibiotics alone. These infections must instead be treated surgically, which comes with high financial costs and patient morbidity. Because of this, much industrial research and new product development effort has focused on technologies to prevent infection by preventing biofilm formation on implants. Implant surface modification and local antibiotic delivery are primary areas of technology development. Antimicrobial-eluting orthopedic trauma implants have been commercialized and appear to be clinically effective but have not yet enjoyed widespread commercial success. The primary barriers to clinical development of infection-resistant implants in orthopedics are not technical, but commercial and regulatory. The large size and high cost of clinical trials in orthopedics, combined with the fragmented nature of the orthopedic implant market and indication-specific regulatory approvals, make it unlikely that the market for any single implant design can support the cost of clinical data required for approval. The regulatory pathway for any individual product design, typically a function of product risk profile, is a key factor determining clinical data requirements and therefore development costs. By accounting for these non-clinical challenges early in the technology development cycle it may be possible for industry, in partnership with clinicians and regulatory bodies, to bring forward anti-biofilm technologies for orthopedic surgery implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call