Abstract

The identification of biofilm growth footprints influencing on the biofilm detachment and breakup can advance research into how biofilms form. Thus, a gravity-driven ceramic membrane bioreactor (GDCMBR) was used to investigate the growth, detachment and breakup of biofilm using rainwater pretreated by electrocoagulation under 70-days continuous operation. The in-situ ultrasonic time-domain reflectometry (UTDR) technique was applied to non-invasively determine the biofilm thickness. Initially, the biofilm was slowly thickening, but it would collapse and became thinner after accumulating to a certain level, and then it thickened again in a later period, following a cyclic pattern of ‘thickening - collapsing – thickening’. This is because the biofilm growth is related with the accumulation of flocs, however, excessive floc formation results in the biofilm being overweight till reaching the thickness limit and thus collapsing. Subsequently, the biofilm gradually thickens again due to the floc production and continuous deposition. Although the biofilm was dynamically changing, the water quality of treatment of the biofilm always remained stable. Ammonia nitrogen and total phosphorus have been almost completely removed, while CODMn removal efficiency was around 25%. And total bacteria amount in the membrane concentrate was obviously higher than that in the influent with the greater microbial activity, demonstrating the remarkable enrichment effect on bacteria. The understanding of biofilm growth characteristic and footprint identification enables us to develop rational approaches to control biofilm structure for efficient GDCMBR performance and operation lifespan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.