Abstract
BackgroundQuinolone resistant Escherichia coli (QREC) have been found in samples from Norwegian broiler chicken, despite quinolones not being administered to poultry in Norway. Biofilm production may be one factor contributing to the observed persistence in the broiler production chain. In the present study, 158 QREC strains from chicken caecal and retail meat samples were screened for biofilm production in microtiter plates, biofilm morphotype on Congo Red (CR) agar plates and phylotype by multiplex PCR. Furthermore, the dynamics in mixed biofilms with strains of different morphotypes were studied on glass slides and on CR agar plates.ResultsAll strains but one produced biofilm in microtiter plates and/or on CR agar plates at room temperature. There were no differences between strains from chicken caecum and chicken retail meat in the mean amount of biofilm produced in microtiter plates. Furthermore, no differences in biofilm production were observed between phylotypes. However, significant differences in biofilm production were found between biofilm morphotypes. The morphotype RDAR (red dry and rough, which has both curli and cellulose in the matrix, was displayed by 70% of the strains. Mean biofilm production by these strains were significantly higher than by strains with the morphotypes PDAR (pink dry and rough) with only cellulose or BDAR (brown dry and rough) with only curli. Interestingly, the two latter morphotypes produced biofilms with the morphotype RDAR when grown together. None of the strains achieved significantly higher numbers of colony forming units (cfu) in mixed biofilms than in single strain biofilms on glass slides.ConclusionsThe results indicate that QREC can form biofilm reservoirs on both inert and organic surfaces in production environments, as well as on meat. This may contribute to persistence and dissemination of the strains. Strains with both curli and cellulose in the biofilm matrix were significantly better biofilm formers than strains lacking one of these components. However, strains with only one of the components could compensate for this by producing mixed biofilms with strains having the other component, and thereby most likely enhance their probabilities of persistence in the production environment.
Highlights
Quinolone resistant Escherichia coli (QREC) have been found in samples from Norwegian broiler chicken, despite quinolones not being administered to poultry in Norway
Morphotypes and phylotypes Large variations in biofilm formation in microtiter plates were observed between strains, with at 595 nm (A595) values ranging from − 0.027 to 3.333, and a mean A595 of 1.215 (Table 1)
In the present study, we show that the majority of QREC from the Norwegian broiler production chain produced biofilm at room temperature in the microtiter plate assay, and that all but one strain produced biofilm in the Congo Red (CR) agar plate assay
Summary
Quinolone resistant Escherichia coli (QREC) have been found in samples from Norwegian broiler chicken, despite quinolones not being administered to poultry in Norway. Biofilm production may be one factor contributing to the observed persistence in the broiler production chain. After the implementation of a selective method in the Norwegian monitoring program for antimicrobial resistance in animals, food and feed (NORM-VET), it was shown that quinolone resistant Escherichia coli (QREC) were present at low levels in a high proportion of the samples from broiler chicken [3, 4]. As quinolones are not administered to poultry in Norway, little is known on how, why, when and where this resistance has developed, and which factors that may contribute to persistence and dissemination of QREC in the broiler production chain. Biofilms are renowned for the problems they cause in clinical settings, food production facilities, and industrial plants [12, 13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.