Abstract

<b>Background and Objective:</b> Heavy metals are one of the most worrisome pollutants due to their toxicity. Prolonged exposure to heavy metals and their accumulation and biomagnification properties adversely affect aquatic biota and human health. The ability of microorganisms to bioremediate heavy metals into non-toxic forms is one solution. The research aims of the study were to find biofilm-forming heavy metal-resistant bacteria isolated from the waters of the Bungus Samudra Fishery Port (PPS), Padang City. <b>Materials and Methods:</b> This study used a marine agar medium modified with the addition of K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, Pb(NO<sub>3</sub>)<sub>2</sub> and CdSO<sub>4</sub>•H<sub>2</sub>O, Marine Broth medium and Congo Red Agar medium. The research methods include, the isolation of bacteria, isolate resistance test to heavy metals, testing the ability of isolates to form biofilms and determine the ability of isolates to reduce heavy metals. Furthermore, molecular identification of bacterial isolates was carried out to determine the type of species. <b>Results:</b> Five heavy metal-resistant bacterial isolates were found that were able to form biofilms, namely isolates B3Cd, B5Cr, B7Pb, B6Pb and B3Pb. The five isolates were able to reduce heavy metal content by 38.67-61.191%. Identification of the best bacterial isolates on each heavy metal tested, namely B3Cd, B5Cr and B7Pb, respectively, showed the type of <i>Acinetobacter schindleri</i>, <i>Acinetobacter</i> sp. and <i>Bacillus</i> sp. <b>Conclusion:</b> These three selected potential isolates can be used as bioremediation agents in metal-polluted waters in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call