Abstract

Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria—both spoilage and pathogenic. However, the capacity of biogenic amine (BA)-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri, and 7 Lactobacillus parabuchneri), all isolated from dairy products. Strains of all the tested species - except for L. vaginalis—were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms.

Highlights

  • Food safety is a major priority in today’s food industry

  • In this work we have examined the biofilm-forming capacity of 56 biogenic amine (BA)-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri, and 7 Lactobacillus parabuchneri), all isolated from dairy products

  • For all the Enterococcus strains assayed, biofilm biomass was maximal at 30 h; for all the L. lactis, L. curvatus, and L. brevis strains, maximum values were reached at 24 h; and for the L. reuteri and L. parabuchneri strains, maxima were recorded at 48 h

Read more

Summary

Introduction

Food safety is a major priority in today’s food industry. Bacterial biofilms on industrial surfaces are a cause for concern since they may act as reservoirs of contaminating microorganisms (Winkelströter et al, 2014). Dairy products in particular are susceptible to such contamination (Srey et al, 2013), with equipment surfaces one of its major sources (Kumar and Anand, 1998). Stainless steel type 304 is the most common material in contact with food in the dairy industry (Zottola and Sasahara, 1994). Easy to clean and highly resistant to corrosion, it can, develop small cracks and crevices where biofilm formation is facilitated (Winkelströter et al, 2014). Some parts of food processing equipment may have inaccessible areas where bacteria can evade cleaning treatments. The main biofilm-related risk is the growth of pathogens and spoilage microorganisms

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call