Abstract

BackgroundBiofilm formation on endotracheal tubes (ETTs) is an early and frequent event in mechanically ventilated patients. The biofilm is believed to act as a reservoir for infecting microorganisms and thereby contribute to development and relapses of ventilator-associated pneumonia (VAP). Once a biofilm has formed on an ETT surface, it is difficult to eradicate. This clinical study aimed to compare biofilm formation on three widely used ETTs with different surface properties and to explore factors potentially predictive of biofilm formation.MethodsWe compared the grade of biofilm formation on ETTs made of uncoated polyvinyl chloride (PVC), silicone-coated PVC, and PVC coated with noble metals after > 24 h of mechanical ventilation in critically ill patients. The comparison was based on scanning electron microscopy of ETT surfaces, biofilm grading, surveillance and biofilm cultures, and occurrence of VAP.ResultsHigh-grade (score ≥ 7) biofilm formation on the ETTs was associated with development of VAP (OR 4.17 [95% CI 1.14–15.3], p = 0.031). Compared to uncoated PVC ETTs, the silicone-coated and noble-metal-coated PVC ETTs were independently associated with reduced high-grade biofilm formation (OR 0.18 [95% CI 0.06–0.59], p = 0.005, and OR 0.34 [95% CI 0.13–0.93], p = 0.036, respectively). No significant difference was observed between silicon-coated ETTs and noble-metal-coated ETTs (OR 0.54 [95% CI 0.17–1.65], p = 0.278). In 60% of the oropharyngeal cultures and 58% of the endotracheal cultures collected at intubation, the same microorganism was found in the ETT biofilm at extubation. In patients who developed VAP, the causative microbe remained in the biofilm in 56% of cases, despite appropriate antibiotic therapy. High-grade biofilm formation on ETTs was not predicted by either colonization with common VAP pathogens in surveillance cultures or duration of invasive ventilation.ConclusionHigh-grade biofilm formation on ETTs was associated with development of VAP. Compared to the uncoated PVC ETTs, the silicone-coated and noble-metal-coated PVC ETTs were independently associated with reduced high-grade biofilm formation. Further research on methods to prevent, monitor, and manage biofilm occurrence is needed.Trial registrationClinicalTrials.gov NCT02284438. Retrospectively registered on 21 October 2014.

Highlights

  • Biofilm formation on endotracheal tubes (ETTs) is an early and frequent event in mechanically ventilated patients

  • The microorganisms detected in the ETT biofilm at extubation were frequently found in surveillance cultures at intubation

  • In patients who developed ventilator-associated pneumonia (VAP), the causative microbe often remained in the biofilm despite appropriate antibiotic therapy

Read more

Summary

Introduction

Biofilm formation on endotracheal tubes (ETTs) is an early and frequent event in mechanically ventilated patients. In recent years, increasing evidence has emerged that biofilm formation on the surfaces of ETTs is an important link in VAP pathogenesis [8,9,10,11,12,13,14] Such biofilms act as reservoirs for pathogens that are believed to contribute to VAP relapses [12]. To the best of our knowledge, these two materials have not been compared regarding biofilm formation in a clinical setting Another ETT coated with a thin layer of a noble metal alloy (NbMC) containing silver, gold, and palladium (Bactiguard® AB, Sweden) has been on the market since 2013, and the manufacturer claims that this coating does not release any silver ions into the environment. Urinary catheters with this coating have been successful in reducing urinary tract infections [16], but the effectiveness of the coating has not been evaluated in intensive care settings

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call