Abstract

Hafnia paralvei, a Gram-negative foodborne pathogen, is found ubiquitously in various aquatic animals and seafoods, which can form biofilm as a dominant virulence factor that contributes to its pathogenesis. However, the biofilm formation mechanism of H. paralvei and its effect on food spoilage has not been fully characterized. Here we show that biofilm formation, is regulated by c-di-GMP which mediated by bcsB, can increase the spoilage ability of H. paralvei. We found that GTP was added exogenously to enhance the synthesis of c-di-GMP, which further promoted biofilm formation. The gene dgcC, one of 11 genes encoding GGDEF domain-containing proteins in H. paralvei, was significantly upregulated with GTP as substrate. The upregulation of dgcC contributes to a significant increase of c-di-GMP and the formation of biofilm. In addition, the overexpression of dgcC induced upregulation of bcsB, a reported effector protein encoding gene, which was further demonstrated that overexpression of bcsB can encourage the synthesis of bacterial cellulose and biofilm formation. The effect of biofilm formation induced by c-di-GMP on spoilage of Yellow River carp (Cyprinus carpio) was evaluated by sensory evaluation, the total viable count, and the total volatile basic nitrogen, which showed that biofilm formation can significantly increase the spoilage ability of H. paralvei on C. carpio. Our findings provide the regulation of c-di-GMP on expression of bcsB, that can contribute to biofilm formation and spoilage ability of H. paralvei, which is favor to understanding the pathogenesis of Hafnia paralvei and its role in food spoilage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call