Abstract
Bacterial capsular polysaccharides (CPSs) participate in environmental adaptation in diverse bacteria species. However, the role and regulation of CPS production in marine bacteria have remained largely unexplored. We previously reported that both wrinkled and translucent Pseudoalteromonas lipolytica variants with altered polysaccharide production were generated in pellicle biofilm-associated cells. In this study, we observed that translucent variants were generated at a rate of ∼20% in colony biofilms of P. lipolytica cultured on HSLB agar plates for 12 days. The DNA sequencing results revealed that nearly 90% of these variants had an IS5-like element inserted within the coding or promoter regions of nine genes in the cps operon. In contrast, IS5 insertion into the cps operon was not detected in planktonic cells. Furthermore, we demonstrated that the IS5 insertion event inactivated CPS production, which leads to a translucent colony morphology. The CPS-deficient variants showed an increased ability to form attached biofilms but exhibited reduced resistance to sublethal concentrations of antibiotics. Moreover, deleting the DNA repair gene recA significantly decreased the frequency of occurrence of CPS-deficient variants during biofilm formation. Thus, IS insertion into the cps operon is an important mechanism for the production of genetic variants during biofilm formation of marine bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.