Abstract

The acetogen Clostridium ljungdahlii is capable of syngas fermentation and microbial electrosynthesis. Biofilm formation could benefit both these applications, but was not yet reported for C. ljungdahlii. Biofilm formation does not occur under standard growth conditions, but attachment or aggregation could be induced by different stresses. The strongest biofilm formation was observed with the addition of sodium chloride. After 3 days of incubation, the biomass volume attached to a plastic surface was 20 times higher with than without the addition of 200 mM NaCl to the medium. The addition of NaCl also resulted in biofilm formation on glass, graphite and glassy carbon, the latter two being often used electrode materials for microbial electrosynthesis. Biofilms were composed of extracellular proteins, polysaccharides, as well as DNA, while pilus-like appendages were observed with, but not without, the addition of NaCl. A transcriptome analysis comparing planktonic (no NaCl) and biofilm (NaCl addition) cells showed that C. ljungdahlii coped with the salt stress by the upregulation of the general stress response, Na+ export and osmoprotectant accumulation. A potential role for poly-N-acetylglucosamines and D-alanine in biofilm formation was found. Flagellar motility was downregulated, while putative type IV pili biosynthesis genes were not expressed. Moreover, the gene expression analysis suggested the involvement of the transcriptional regulators LexA, Spo0A and CcpA in stress response and biofilm formation. This study showed that NaCl addition might be a valuable strategy to induce biofilm formation by C. ljungdahlii, which can improve the efficacy of syngas fermentation and microbial electrosynthesis applications.

Highlights

  • The acetogen Clostridium ljungdahlii is of high interest for industrial applications, because of its specific metabolic capacities

  • This medium consisted of 17 gÁL-1 Bacto tryptone (BD) and 10 gÁL-1 yeast extract (Fisher Scientific) at pH 6.0, Biofilm Formation by Clostridium ljungdahlii was bubbled with nitrogen and autoclaved, after which 5 gÁL-1 fructose and 1 mM cysteine were added from anoxic and sterile stock solutions

  • The results presented in this study show that biofilm formation by C. ljungdahlii is induced by the addition of NaCl to the medium (Figs 1, 2A and 4A)

Read more

Summary

Objectives

The goal of this study was to examine biofilm formation by C. ljungdahlii

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call