Abstract
Our survey revealed that infected intrauterine devices (IUDs) recovered from patients suffering from reproductive tract infections (RTIs) were tainted with Candida biofilm composed of a single or multiple species. Scanning electron microscopy (SEM) analysis of C. albicans biofilm topography showed that it consists of a dense network of mono- or multilayer of cells embedded within the matrix of extracellular polymeric substances (EPS). Confocal scanning laser microscopy (CSLM) and atomic force microscopy (AFM) images depicted that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements with EPS distributed in the cell-surface periphery or at cell-cell interface. Biochemical analysis showed that EPS produced by C. albicans biofilm contained significantly reduced total carbohydrate (40%), protein (5%) and enhanced amount of hexosamine (4%) in contrast to its planktonic counterparts. The in vitro activity of antifungal agents amphotericin B, nystatin, fluconazole and chlorhexidine against pre-formed C. albicans biofilm, assessed using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay revealed increased resistance of these infectious biofilm (50% reduction in metabolic activity at a concentration of 8, 16, 64, 128 μg/ml respectively) in comparison to its planktonic form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.