Abstract

Bacteria form dense surface-associated communities known as biofilms that are central to their persistence and how they affect us. Biofilm formation is commonly viewed as a cooperative enterprise, where strains and species work together for a common goal. Here we explore an alternative model: biofilm formation is a response to ecological competition. We co-cultured a diverse collection of natural isolates of the opportunistic pathogen Pseudomonas aeruginosa and studied the effect on biofilm formation. We show that strain mixing reliably increases biofilm formation compared to unmixed conditions. Importantly, strain mixing leads to strong competition: one strain dominates and largely excludes the other from the biofilm. Furthermore, we show that pyocins, narrow-spectrum antibiotics made by other P. aeruginosa strains, can stimulate biofilm formation by increasing the attachment of cells. Side-by-side comparisons using microfluidic assays suggest that the increase in biofilm occurs due to a general response to cellular damage: a comparable biofilm response occurs for pyocins that disrupt membranes as for commercial antibiotics that damage DNA, inhibit protein synthesis or transcription. Our data show that bacteria increase biofilm formation in response to ecological competition that is detected by antibiotic stress. This is inconsistent with the idea that sub-lethal concentrations of antibiotics are cooperative signals that coordinate microbial communities, as is often concluded. Instead, our work is consistent with competition sensing where low-levels of antibiotics are used to detect and respond to the competing genotypes that produce them.

Highlights

  • While the traditional model for bacterial life was one of cells swimming in liquid, it is realized that bacteria commonly live in surface-associated communities known as biofilms [1,2,3,4]

  • Biofilm formation increases for many concentrations of the antibiotics, until the concentrations become so high that toxicity dominates [13]

  • Consistent with the hypothesis that biofilm formation is a response to ecological competition, we find that biofilm formation is increased in mixed cultures compared to pure cultures, both in a broad scale survey that mixed combinations of 22 natural isolates (Fig 1C) and in defined pairwise comparisons in which we show that the strength of the biofilm response depends on the relative proportion of each strain at the start of the co-cultures (Fig 1D)

Read more

Summary

Introduction

While the traditional model for bacterial life was one of cells swimming in liquid, it is realized that bacteria commonly live in surface-associated communities known as biofilms [1,2,3,4]. These groups of bacteria carry significant medical and economic importance that includes a role in chronic diseases, antibiotic tolerance, biofouling, and waste-water treatment [5,6,7]. There are a growing number of studies concluding that natural microbial communities are cooperative enterprises in which strains and species work together, both in biofilm formation and metabolism [22,23,24,25,26,27,28,29,30,31]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call