Abstract
Biofilm matrices are formed largely of extracellular polymeric substance (EPS). This study was conducted to investigate biofilm formation and EPS production by Cronobacter sakazakii under various conditions (media, nutrition, and relative humidity (RH)) by quantification of EPS and cell populations, Field Emission Scanning Electron Microscope (FE-SEM), and colony observation. Various agar media conditions (TSA without dextrose (W/D), M9 minimum salt medium (MSM) agar, and M9 MSM agar with 3% glucose, 3% NaCl, 3% Tween 80, 3% sucrose, and adjusted to pH 5 with HCl) were prepared. C. sakazakii biofilm formed on the surface of stainless steel coupons (SSCs) immersed in TSB W/D and M9 MSM with or without 0, 1, 3, and 5% sucrose and subsequently exposed to various RH levels (23, 43, 68, 85, and 100%). EPS production by C. sakazakii on TSA W/D was significantly higher than that on other media after 1 and 2 days. However, C. sakazakii ATCC 12868 produced the highest levels of EPS (209.18 ± 16.13 and 207.22 ± 4.14 μg/mL after 1 and 2 days, respectively) on M9 MSM agar with 3% sucrose. Regarding C. sakazakii ATCC 12868 biofilm formed on the surface of SSCs immersed in M9 MSM with 0, 1, 3, and 5% sucrose and subsequently exposed to various RHs, populations were significantly different among the various RHs and sucrose concentrations, and EPS production was significantly higher (4.69 mg/L) compared to other sucrose concentrations (0%:0.71 mg/L and 1%:0.98 mg/L), except for M9 MSM with 3% sucrose (2.97 mg/L) (P ≤ 0.05). From these results, biofilm formation and EPS production by C. sakazakii differed depending on the nutrient or environmental conditions provided to the cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.