Abstract

Calcium carbonate precipitation and microbialite formation at highly supersaturated mixing zones of thermal spring waters and alkaline lake water have been investigated at Pyramid Lake, Nevada. Without precipitation, pure mixing should lead to a nearly 100-fold supersaturation at 40oC. Physicochemical precipitation is modified or even inhibited by the properties of biofilms, dependent on the extent of biofilm development and the current precipitation rate. Mucus substances (extracellular polymeric substances, EPS, e.g., of cyanobacteria) serve as effective Ca 2C -buffers, thus preventing seed crystal nucleation even in a highly supersaturated macroenvironment. Carbonate is then preferentially precipitated in mucus-free areas such as empty diatom tests or voids. After the buffer capacity of the EPS is surpassed, precipitation is observed at the margins of mucus areas. Hydrocarbon biomarkers extracted from (1) a calcifying Phormidium-biofilm, (2) the stromatolitic carbonate below, and (3) a fossil ‘tufa’ of the Pleistocene pinnacles, indicate that the cyanobacterial primary producers have been subject to significant temporal changes in their species distribution. Accordingly, the species composition of cyanobacterial biofilms does not appear to be relevant for the formation of microbial carbonates in Pyramid Lake. The results demonstrate the crucial influence of mucus substances on carbonate precipitation in highly supersaturated natural environments. © 1999 Elsevier Science B.V. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.