Abstract

Economical and easily prepared bulking agents and microbial carriers are essential in the practical application of bioevaporation process. Biofilm-developed biomass residues not only provide structural support and microbial sources but also may contribute metabolic heat to the bioevaporation process, achieving the enhanced water evaporation and synergistic treatment of biomass residues. In this study, biofilm was cultivated on the rice straw, wheat straw, sawdust, corncob, luffa cylindrica and palm first, then those biofilm-developed biomass residues were successfully used as the bulking agents and microbial carriers in food waste bioevaporation. The degradation potential (volatile solid degradation ratio) of those biomass residues was in the order of corncob (23.96%), wheat straw (21.12%), rice straw (14.57%), luffa cylindrica (11.02%), sawdust (−2.87%) and palm (−9.24%). It's primarily the degradation of the major components, cellulose and hemicellulose, in corncob and wheat straw governed the metabolic heat contribution (91.73 and 79.61%) to the bioevaporation process. While the high lignin content in sawdust (14.57%) and palm (28.62%) caused negligible degradation of cellulose and hemicellulose, hence made them only function as structural supporter and did not contribute any metabolic heat. Moreover, though the metabolic heat contribution of rice straw and luffa cylindrica reached 58.19 and 37.84%, their lowest lignocellulose content (62.99 and 65.95%) and their lower density, as well as the dominated Xanthomonas (bacteria) and Mycothermus (fungi) led to their rapid collapse during the repeated cycles of bioevaporation. The greatest abundance of thermophilic bacteria (22.3–88.0%) and thermophilic fungi (82.0–99.3%) was observed in the corncob pile. Furthermore, considering the Staphylococcus (pathogenic bacteria) and Candida (animal pathogen) was effectively inhibited, the biofilm-developed corncob was the most favorable bulking agents and microbial carrier for the synergistic bioevaporation of highly concentrated organic wastewater and biomass residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.