Abstract

This study presented an immobilized fermentation process of engineered Komagataella phaffii with improved biofilm-forming abilities for continuous xylanase production and provided the first insights into the molecular basis of biofilm-based immobilized fermentation of K. phaffii. Overexpression of PAS_chr2-2_0178 and PAS_FragB_0067 in K. phaffii facilitated biofilm formation with 31.6% and 113.8% increasement, respectively. Subsequently, a biofilm-based immobilized fermentation process was developed for the PAS_FragB_0067-overexpressing strain. Xylanase production over five batches by GS115-0067* was better than that of GS115-xyn, with an overall average of 35.4% higher enzyme activity. PAS_FragB_0067 overexpression resulted in better adhesion of K. phaffii cells on the carrier, and enhanced biofilms could provide more active cells in the immobilized fermentation process. Transcriptome analysis revealed that overexpression of the biofilm-related gene promoted central carbon metabolism. These findings offer a valuable reference strategy to improve production efficiency of K. phaffii cells in continuous fermentation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.