Abstract

The accumulation of cadmium (Cd) in Oryza sativa L., the world’s most significant staple crop, is a health threat to millions of people. The objective of this study was to evaluate the effectiveness of commercially available biofertilizers (with high (BF2) and low organic matter (OM) content (BF1)) on Cd accumulation in two types of soils and to determine the bacterial community responses by high-throughput sequencing. The study was conducted in the form of pot experiment in greenhouse in 2018. Four treatments were set: BF1, BF2, organic fertilizer (OF), and control (CK) and the amendments were applied before the rice cultivation. The results showed that the addition of biofertilizers immobilized or mobilized Cd in soils, depending on the soil type and the OM content in biofertilizers. The exogenous OM in biofertilizers was the driving factor for the difference in pH and Cd accumulation in rice grains. The application of biofertilizers with high OM content was effective in reducing Cd accumulation in the rice grains (19.7% lower than CK) by significantly increasing soil pH (from 6.02 to 6.67) in acid silt loam soil (TZ). The consumption of acid fermentation products by soil chemoorganotrophs and the complexation of organic anions in the biofertilizer treatment tended to buffer the pH drop in the drainage and decrease the Cd availability. However, in the weak acid silty clay loam soil (SX), the addition of biofertilizer with high OM significantly increased Cd accumulation in rice grains (21.9% higher than CK), probably owing to the release of acid substances, resulting from the significant increase of the predominant bacteria Chloroflexi. The addition of biofertilizer with low OM content did not significantly change Cd accumulation in rice grains or affect the soil microbial structures in both soils. In conclusion, the effects of biofertilizer on rice Cd accumulation were related to the OM content and soil bacterial community. Biofertilizers with high organic matter may not be suitable for amendments in the paddy soils with high clay content to reduce Cd accumulation in rice grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.