Abstract

Biological ferroelectric materials have great potential in biosensing and disease diagnosis and treatment. Glycine crystals form the simplest bioferroelectric materials, and here we investigate the polarizations of its β- and γ-phases. Using density functional theory, we predict that glycine crystals can develop polarizations even larger than those of conventional inorganic ferroelectrics. Further, using systematic molecular dynamics simulations utilizing polarized crystal charges, we predict the Curie temperature of γ-glycine to be 630 K, with a required coercive field to switch its polarization states of 1 V·nm-1, consistent with experimental evidence. This work sheds light on the microscopic mechanism of electric dipole ordering in biomaterials, helping in the material design of novel bioferroelectrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call