Abstract

Bioconversion of hemicellulosic sugars into second generation (2G) ethanol plays a pivotal role in the overall success of biorefineries. In this study, ethanol production performance of a novel xylose-fermenting yeast,Scheffersomyces shehataeUFMG-HM 52.2, was evaluated under batch fermentation conditions using sugarcane bagasse (SB) hemicellulosic hydrolysate as carbon source. Dilute acid hydrolysis of SB was performed to obtain sugarcane bagasse hemicellulosic hydrolysate (SBHH). It was concentrated, detoxified, and supplemented with nutrients in different formulations to prepare the fermentation medium to the yeast evaluation performance.S. shehataeUFMG-HM 52.2 (isolated from Brazilian Atlantic rain forest ecosystem) was used in fermentations carried out in Erlenmeyer flasks maintained in a rotator shaker at 30°C and 200 rpm for 72 h. The use of a fermentation medium composed of SBHH supplemented with 5 g/L ammonium sulfate, 3 g/L yeast extract, and 3 g/L malt extract resulted in 0.38 g/g of ethanol yield and 0.19 g L.h of volumetric productivity after 48 h of incubation time.

Highlights

  • Biofuels have gained important place on the world stage, due to their sustainability and the fast depletion rate of fossil fuels

  • The concentrated hydrolysate was detoxified following the methodology established by Alves et al [8] which consists of an overliming and activated charcoal combination

  • The determination of compounds in hemicellulosic hydrolysate was verified by high performance liquid chromatography (HPLC)

Read more

Summary

Introduction

Biofuels have gained important place on the world stage, due to their sustainability and the fast depletion rate of fossil fuels. Brazil is the second largest ethanol producer (23.6 billion liters in 2012/2013) in the world by alcoholic fermentation directly from the juice or from the molasses obtained in sugar production facilities [1, 2]. According to the Brazilian National Supply Company (CONAB) [1], the sugarcane production correspondent to the 2013/2014 harvest year is about 652 millions of metric tons. These values are correspondent to about 174 millions of metric tons of SB, considering the proportion indicated by Procknor [3]. Remaining SB may serve as an excellent raw material for second generation (2G) ethanol production due to the presence of high amount of carbohydrates such as glucose and xylose [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call