Abstract

The potential of by-products and intermediate products of sugar beet processing as raw materials for bioethanol production in Vojvodina region has a big scope in view of the demand of ethanol as an alternative for fossil fuels. Also, from ecological point of view, use of agricultural waste as carriers for cells immobilization is justifiable. The biocatalyst prepared by immobilization of Saccharomyces cerevisiae on maize stem ground tissue was used for batch fermentation of sugar beet molasses and thick juice under normal and very high gravity (VHG) conditions. Cell immobilization was observed by electron microscopy. The carrier was effective for cell immobilization and provided strength and stability to the yeast cell mass and functioned as a fortification against toxins and inhibitors, enabling efficient ethanol fermentation, particularly in VHG conditions. Three different initial glucose concentrations were tested: 100, 150 and 300g/l. The maximum ethanol concentration of 83.20g/l for molasses and 132.39g/l for thick juice were achieved in VHG fermentation by immobilized cells, whereas the free yeast cells were unsuccessful in the same media. Taking into consideration significant process parameters sugar beet thick juice was found to be economically favorable, compared to molasses, particularly in the VHG fermentation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call