Abstract
Kinetics for bioethanol production from glucose using Saccharomyces cerevisiae (PTCC 24860) was experimentally studied in a batch membrane bioreactor and a conventional bioreactor using a pervaporation process. For pervaporation, a dense hydrophobic polydimethylsiloxane membrane was used. The batch membrane bioreactor resulted in increase of cell density, improved productivity and yield. A generic model was developed which can give a unique description for production of bioethanol within both batch membrane bioreactor and conventional bioreactor. Coupled describing equations of the model were solved by means of genetic algorithm approach. The logistic model considered for expression of growth kinetics and kinetic parameters calculated through the genetic algorithm. The results demonstrated that this generic model is capable to describe reasonably the behavior of both the conventional bioreactor and the batch membrane bioreactor with the highest correlation coefficient (0.979 and 0.987, respectively).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.