Abstract
Bioethanol as an alternative fuel is widely used as a substitute for gasoline and also in gasoline direct injection (GDI) vehicles, which are quickly replacing traditional port-fuel injection (PFI) vehicles. Better fuel efficiency and increased engine power are reported advantages of GDI vehicles. However, increased emissions of soot-like nanoparticles are also associated with GDI technology with yet unknown health impacts. In this study, we compare emissions of a flex-fuel Euro-5 GDI vehicle operated with gasoline (E0) and two ethanol/gasoline blends (E10 and E85) under transient and steady driving conditions and report effects on particle, polycyclic aromatic hydrocarbon (PAH), and alkyl- and nitro-PAH emissions and assess their genotoxic potential. Particle number emissions when operating the vehicle in the hWLTC (hot started worldwide harmonized light-duty vehicle test cycle) with E10 and E85 were lowered by 97 and 96% compared with that of E0. CO emissions dropped by 81 and 87%, while CO2 emissions were reduced by 13 and 17%. Emissions of selected PAHs were lowered by 67-96% with E10 and by 82-96% with E85, and the genotoxic potentials dropped by 72 and 83%, respectively. Ethanol blending appears to reduce genotoxic emissions on this specific flex-fuel GDI vehicle; however, other GDI vehicle types should be analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.