Abstract

Sea urchins are dominant members of rocky temperate reefs around the world. They often occur in cavities within the rock, and fit so tightly, it is natural to assume they sculpted these “pits.” However, there are no experimental data demonstrating they bore pits. If they do, what are the rates and consequences of bioerosion to nearshore systems? We sampled purple sea urchins, Strongylocentrotus purpuratus, from sites with four rock types, three sedimentary (two sandstones and one mudstone) and one metamorphic (granite). A year-long experiment showed urchins excavated depressions on sedimentary rocks in just months. The rate of pit formation varied with rock type and ranged from <5 yr for medium-grain sandstone to >100 yr for granite. In the field, there were differences in pit size and shapes of the urchins (height:diameter ratio). The pits were shallow and urchins flatter at the granite site, and the pits were deeper and urchins taller at the sedimentary sites. Although overall pit sizes were larger on mudstone than on sandstone, urchin size accounted for this difference. A second, short-term experiment, showed the primary mechanism for bioerosion was ingestion of the substratum. This experiment eliminated potential confounding factors of the year-long experiment and yielded higher bioerosion rates. Given the high densities of urchins, large amounts of rock can be converted to sediment over short time periods. Urchins on sandstone can excavate as much as 11.4 kg m-2 yr-1. On a broader geographic scale, sediment production can exceed 100 t ha-1 yr-1, and across their range, their combined bioerosion is comparable to the sediment load of many rivers. The phase shift between urchin barrens and kelp bed habitats in the North Pacific is controlled by the trophic cascade of sea otters. By limiting urchin populations, these apex predators also may indirectly control a substantial component of coastal rates of bioerosion.

Highlights

  • The high densities and intense grazing of sea urchins drive the composition of many nearshore communities [1,2,3,4,5]

  • Samples in this study were obtained in compliance with all federal and state regulations under the Scientific Collecting (SC) permit issued by the Department of Fish and Wildlife (California Natural Resource Agency) #SC-9365 to M

  • There was a clear difference among treatments in pit formation over the year (Fig 3) [28]

Read more

Summary

Introduction

The high densities and intense grazing of sea urchins drive the composition of many nearshore communities [1,2,3,4,5]. Proponents of the active boring hypothesis speculated about the specific mechanism(s) of pit formation suggesting the grasping by tubefeet [11] or scraping by the teeth of the feeding structure, Aristotle’s Lantern [8, 12]. Temperate-reef sea urchins occur in pits on different types of metamorphic and sedimentary rock reef, e.g., granite and sandstone [14]. Later workers assumed sea urchins were responsible for the pits, they did not know the rate of formation [15]. If temperate sea urchins are boring pits, what are the rates and consequences of their bioerosion?

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call