Abstract

Development of anticancer treatments based on microRNA (miRNA/miR) such as miR-34a replacement therapy is limited to the use of synthetic RNAs with artificial modifications. Herein, we present a new approach to a high-yield and large-scale biosynthesis, in Escherichia coli using transfer RNA (tRNA) scaffold, of chimeric miR-34a agent, which may act as a prodrug for anticancer therapy. The recombinant tRNA fusion pre-miR-34a (tRNA/mir-34a) was quickly purified to a high degree of homogeneity (>98%) using anion-exchange fast protein liquid chromatography, whose primary sequence and post-transcriptional modifications were directly characterized by mass spectrometric analyses. Chimeric tRNA/mir-34a showed a favorable cellular stability while it was degradable by several ribonucleases. Deep sequencing and quantitative real-time polymerase chain reaction studies revealed that tRNA-carried pre-miR-34a was precisely processed to mature miR-34a within human carcinoma cells, and the same tRNA fragments were produced from tRNA/mir-34a and the control tRNA scaffold (tRNA/MSA). Consequently, tRNA/mir-34a inhibited the proliferation of various types of human carcinoma cells in a dose-dependent manner and to a much greater degree than the control tRNA/MSA, which was mechanistically attributable to the reduction of miR-34a target genes. Furthermore, tRNA/mir-34a significantly suppressed the growth of human non-small-cell lung cancer A549 and hepatocarcinoma HepG2 xenograft tumors in mice, compared with the same dose of tRNA/MSA. In addition, recombinant tRNA/mir-34a had no or minimal effect on blood chemistry and interleukin-6 level in mouse models, suggesting that recombinant RNAs were well tolerated. These findings provoke a conversation on producing biologic miRNAs to perform miRNA actions, and point toward a new direction in developing miRNA-based therapies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.