Abstract
Magnetotactic bacteria synthesize nano-sized magnetic particles in the cells. The bacterial magnetic particles have a core of magnetite (Fe3O4) and are surrounded by a lipid bilayer membrane containing a number of proteins, referred to as magnetosome. Since the bioengineering methodology for magnetotactic bacteria was established, expression of a wide range of functional proteins onto magnetic particles has successfully been performed in which the native proteins in the lipid membrane can serve as anchors for the protein display. The expression system, here we call “magnetosome-display system,” has enabled us to reduce the cost of production of protein-magnetic particle complexes. These advantages lead to creation of a variety of magnetic particles displaying functional proteins, including membrane proteins and disulfide-bonded proteins, which the basic approach cannot match. This review provides an overview of the developmental status of magnetic particles in the field of bioassays, summarizes magnetosome display system by magnetotactic bacteria, and discusses their usefulness and prospects in the medical and environmental fields. The novel system has shown considerable promise for improving the display efficiency of the difficult-to-express proteins and thus is expected to contribute to further development of functional magnetic particles toward biotechnological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.