Abstract
Dietary prebiotic fibers play an important role in modulating gut microbiota by enhancing the abundance of beneficial microorganisms and their bioactive metabolites. However, dietary fibers are a structurally heterogeneous class of polysaccharides, varying in molar mass, branching patterns, and monosaccharide composition, which could influence their utilization by various gut microorganisms. The present study aimed to investigate the effects of molar mass and chemical structure of wheat arabinoxylan fiber (AX) on the growth and metabolism of two key gut resident bacteria (Faecalibacterium prausnitzii and Lacticaseibacillus rhamnosusLGG), which are linked to human health. For this purpose, low, medium, and high molar masses of AX (LAX, MAX, and HAX, respectively) were modified with specific α-arabinofuranosidases to leave only singly substituted, only doubly substituted, or unsubstituted xylose units. Almost all the modified AX samples showed a better prebiotic score than unmodified AX for different molar masses. The modified LAX exhibited a better prebiotic effect than HAX and MAX. In addition, LAX, with doubly substituted xylose units, exhibited the highest prebiotic potential and SCFA production by both microorganisms. Furthermore, AX, either singly or doubly substituted, had a consistent impact on L. rhamnosus growth, whereas AX, with all arabinose residues removed, had a greater impact on F. prausnitzii. These findings support the potential of bioengineered AX as next-generation prebiotics targeting health-related gut microbes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Plant foods for human nutrition (Dordrecht, Netherlands)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.