Abstract

Donor shortage remains a continued challenge in liver transplantation. Recent advances in tissue engineering have provided the possibility of creating functional liver tissues as an alternative to donor organ transplantation. Small bioengineered liver constructs have been developed, however a major challenge in achieving functional bioengineered liver in vivo is the establishment of a functional vasculature within the scaffolds. Our overall goal is to bioengineer intact livers, suitable for transplantation, using acellular porcine liver scaffolds. We developed an effective method for reestablishing the vascular network within decellularized liver scaffolds by conjugating anti-endothelial cell antibodies to maximize coverage of the vessel walls with endothelial cells. This procedure resulted in uniform endothelial attachment throughout the liver vasculature extending to the capillary bed of the liver scaffold and greatly reduced platelet adhesion upon blood perfusion in vitro. The re-endothelialized livers, when transplanted to recipient pigs, were able to withstand physiological blood flow and maintained for up to 24 h. This study demonstrates, for the first time, that vascularized bioengineered livers, of clinically relevant size, can be transplanted and maintained in vivo, and represents the first step towards generating engineered livers for transplantation to patients with end-stage liver failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.