Abstract

Silver oxide nanoparticles have various biomedical and pharmaceutical applications. However, conventional nanofabrication of Ag2O is associated with the use of toxic chemicals and organic solvents. To circumvent this hurdle, herein silver oxide quantum dots (Ag2O-QDs) were synthesized quickly (3 min) via the use of ultrasonic irradiation and plant-extract. Additionally, due to ultrasonic irradiation's effect on cell-wall destruction and augmentation of extraction efficiency, ultrasonic was also used in the preparation of Mentha pulegium and Ficus carica extracts (10 min, r.t) as natural eco-friendly reducing/capping agents. The UV–Vis result indicated a broad absorption peak at 400–500 nm. TEM/SEM analysis showed that ultrasound introduced a uniform spherical particle and significantly reduced particle size compared to the conventional heating method (∼ 9 nm vs. ∼ 100 nm). Silver and oxygen elements were found in the bio-synthesized Ag2O by EDS. The FTIR and phenol/flavonoid tests revealed the presence of phenol and flavonoid associated with the nanoparticles. Moreover, nanoparticles exhibited antioxidant/antibacterial/antifungal activities. The MIC and MBC results showed the Ag2O QDs synthesized with M. pulegium extract have the highest antibacterial activity against E. coli (MBC = MIC:15.6 ppm), which were significantly different from uncoated nanoparticles (MBC = MIC:500 ppm). The data reflects the role of phyto-synthesized Ag2O-QDs using ultrasonic-irradiation to develop versatile and green biomedical products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.