Abstract
Silk fibroin exhibits high biocompatibility and biodegradability, making it a versatile biomaterial for medical applications. However, contaminated silkworm-derived substances in remnant sericin from the filature and degumming process can result in undesired immune reactions and silk allergy, limiting the widespread use of fibroin. Here, we established transgenic silkworms with modified middle silk glands, in which sericin expression was repressed by the ectopic expression of cabbage butterfly-derived cytotoxin pierisin-1A, to produce cocoons composed solely of fibroin. Intact, nondegraded fibroin can be prepared from the transgenic cocoons without the need for sericin removal by the filature and degumming steps that cause fibroin degradation. A wide-angle X-ray diffraction analysis revealed low crystallinity in the transgenic cocoons. However, nondegraded fibroin obtained from transgenic cocoons enabled the formation of fibroin sponges with varying densities by using 1–5% (v/v) alcohol. The effective chondrogenic differentiation of ATDC5 cells was induced following their cultivation on substrates coated with intact fibroin. Our results showed that intact, allergen-free fibroin can be obtained from transgenic cocoons without the need for sericin removal, providing a method to produce fibroin-based materials with high biocompatibility for biomedical uses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.