Abstract

Silk proteins self-assemble into mechanically robust material structures that are also biodegradable and non-cytotoxic, suggesting utility for gene delivery. Since silk proteins can also be tailored in terms of chemistry, molecular weight and other design features via genetic engineering, further control of this system for gene delivery can be considered. In the present study, silk-based block copolymers were bioengineered with poly( l-lysine) domains for gene delivery. Ionic complexes of these silk-polylysine based block copolymers with plasmid DNA (pDNA) were prepared for gene delivery to human embryonic kidney (HEK) cells. The material systems were characterized by agarose gel electrophoresis, atomic force microscopy, and dynamic light scattering. The polymers self-assembled in solution and complexed plasmid DNA through ionic interactions. The pDNA complexes with 30 lysine residues prepared at a polymer/nucleotide ratio of 10 and with a solution diameter of 380 nm showed the highest efficiency for transfection. The pDNA complexes were also immobilized on silk films and demonstrated direct cell transfection from these surfaces. The results demonstrate the potential of bioengineered silk proteins as a new family of highly tailored gene delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.