Abstract

One of the major limitations of studying cancer in distant sites is the lack of representative laboratory models that mimic the biological processes occurring in vivo. In this protocol, we demonstrate the application of melt electrowriting technology (MEW) to provide 3D microfiber scaffolds suitable for this purpose. Using primary human cells, MEW scaffolds support the reproducible formation of human bone-like 3D microenvironments. Co-culture with human cancer cells provides an in vitro bioengineered model of metastases in bone, suitable for investigating cell-cell and cell-matrix interactions between bone and cancer cells. By proposing variations to standard tissue histology, immunohistochemistry, immunofluorescence, and 3D imaging techniques, we show how to characterize cell morphology and protein expression in a reproducibly engineered bone metastatic microtissue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.