Abstract

Chronic Kidney Disease (CKD) is becoming one of the major causes of morbidity and mortalities in 21st century. We have developed a bioengineered cellulosic paper device for the quantification of albumin (ALB) in physiological samples. The paper surface was activated and antibodies specific to target biomarker was immobilized on engineered paper surface. Every step after modification was characterized by FTIR, XPS, SPM and optical analysis. Further, the device model was designed using CAD file, and a 3-D cascade device was fabricated with in-built constant light source to provide proper and controlled environment for in-situ image analysis. After adding the sample on the bioengineered paper, the antigen-antibody reaction takes place, after that addition of dye results in change of color from yellow to blueish-green within 40 s. An optical method was employed for the analysis of the images by recognizing the specific area and the color intensity. Additionally, the immunosensor specificity was evaluated on number of molecules that are usually found in the serum sample. The linear dynamic range of the developed immunosensor has been reported to be 1–60 mg/mL, covering the normal as well as clinical range of ALB in physiological samples with a detection limit of 0.049(±0.002) mg/mL. With good precision and recovery, the device was able to successfully determine the ALB concentrations in serum sample. The developed device has simple and user-friendly interface and it may also help diagnosing CKD in personalized settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.