Abstract

An anaerobic hybrid reactor was tested in the treatment of raw olive mill effluent (OME) without water dilution, chemical correction and any pretreatment. A feeding strategy was applied by increasing progressively the OME volume fraction from 8% to 83% in the feed mixture combined with an OME complementary substrate (piggery effluent). A biogas production of 3.16 m 3 m � 3 d � 1 was achieved at an organic loading rate of COD at 7.1 kg m � 3 d � 1 , when the highest fraction of OME was added to the influent (volume fraction of 83%; COD concentration fraction of about 94%). At these conditions, the degradation of olive mill effluent occurred without any inhibition. The reactor was capable to digest an acid influent (pH ¼ 4.7), revealing a high buffering capacity. The increase of influent phenols concentration from 0.87 kg m � 3 to 2.31 kg m � 3 did not influence the reactor removal capacity (phenolic fraction removal from 51% to 61%). Biomass acclimation to OME was accomplished by using a feeding strategy based on effluents complementarity. Furthermore, it was demonstrated that the hybrid digester was able to recover after an accidental overload, and the packing material on the top of the unit prevented excessive loss of biomass. Comparatively to the classic configuration digesters, the hybrid digester is an effective alternative to maximize bioenergy recovery from OME.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.