Abstract

The suitability of integrating biological and thermal transformation of microalgal biomass to design a biorefinery was studied. The mixed cultivation of Chlorella sp. and Bracteacoccus sp. in city wastewater produced 12 g L−1 of biomass (0.77 g L−1 day−1) and removed nitrates and phosphates by 68% and 75%, respectively. Microalgae outcompeted the contaminating microbes by raising the pH of wastewater to 9.93. The lipid-free residual biomass was pyrolyzed at four heating rates (10, 20, 30, 40 °C min−1) which showed a three-stage pyrolysis. The activation energies (182–256 kJ mol−1) and their corresponding lower enthalpies at the conversional fractions from 0.2 to 0.6 indicated that product formation was being favored. The values of pre-exponential factors (1015-17 s−1), Gibbs free energy (159–190 kJ mol−1) and entropy (43–81 J mol−1) showed efficient pyrolysis. The data may lead to establish a robust microalgal biorefinery to produce biomass and energy along with primary treatment of city wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.