Abstract
BackgroundThe Paris Climate Agreement requires a rapid and efficient shift to renewable energies and a decarbonization of the energy system. Combined heat and power provision from biomass is one way to efficiently provide renewable heat. Despite this, many bioenergy plants in Germany are mainly used to generate electricity and the provision of externally usable heat still has untapped potential. In this study, we investigated gross quantities as well as the economically viable potential of Germany’s current bioenergy plant stock in supplying renewable heat.MethodsWe used a top-down GIS modeling approach to spatially and explicitly assess the heat demand of three different categories of heat sinks at sub-municipal level. These included residential, commercial, and industrial areas, as well as large individual heat consumers. We then calculated the plant-specific heat sales potential for two different district heating network options. In addition, we developed a method for assessing the economic efficiency of the previously identified technical heat sales volume for a set of 20 different clusters of bioenergy plants.ResultsThe results show that about 50% of the bioenergy plants have potential heat consumers in their immediate proximity. The overall technical heat sales potential for all three categories totals around 150 TWhth/a. However, this potential is not evenly distributed throughout Germany. Certain regions appear to be more favorable for investing in district heating networks powered by heat from biomass. The economically viable heat sales potential related to electrical energy generation ranges from − 0.128 to 0.160 €/kWhth.ConclusionWe concluded that, under certain conditions such as location or supply and demand structure, German bioenergy plants have the potential to provide a significant share to renewable energies in the heating sector. In addition, the heat sales potential is highly relevant for plant operators as the importance of heat as a business segment is set to increase. Furthermore, bioenergy plants could contribute 2.1% (16.3 TWhth/a) to the total demand for space heating in Germany (765 TWhth/a) when considering certain technical and economic constraints.
Highlights
The Paris Climate Agreement requires a rapid and efficient shift to renewable energies and a decarbonization of the energy system
Large individual heat consumers We identified four categories of large individual heat consumers (LIHC) which are suited for District heating network (DHN) fueled by heat generated from biomass: schools, hospitals, public outdoor swimming pools, and commercial greenhouses [26]
The results show that, based on our assumptions, 52% of the Bioenergy plant (BEP) are suitable for distributing heat through a
Summary
The Paris Climate Agreement requires a rapid and efficient shift to renewable energies and a decarbonization of the energy system. Heat accounts for half of the final energy consumption in Germany, but currently only 13.9 % of heat is supplied by renewable energy sources (RES) [1]. In order to achieve the greenhouse gas reduction targets set by the German government, DHNs supplied by RES will need to provide 23% of the final energy consumption for building heat by 2050 [5]. One reason for this is that regions without a natural gas network and with predominantly decentralized oil heating systems need to have renewable alternatives for their so far fossil-based heat supply [6]. Fritz and Pehnt [8] recently stated that biomass must partly contribute to this as well
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.