Abstract

Evidence implicating both mitochondria and bioenergetics as playing a crucial role in necrotic and apoptotic cell death is rapidly accumulating. Mitochondria are essential in controlling specific apoptosis cell death pathways and they are the major source of free radicals in the cell. Direct evidence for a role of mitochondria in neurodegenerative diseases comes from studies in Friedreich's Ataxia. Mutations in frataxin lead to an accumulation of iron within mitochondria. We found a three‐fold increase in a marker of oxidative damage to DNA in the urine of patients with Friedreich's Ataxia. There is evidence for mitochondrial defects in patients with amyotrophic lateral sclerosis (ALS). There are mitochondrial abnormalities in liver biopsies and muscle biopsies from individuals with sporadic ALS. Muscle biopsies have shown reduced complex I activity in patients with sporadic ALS. A study of ALS cybrids showed a significant decrease in complex I activity as well as trends towards reduced complex 3 and 4 activities. We found increased levels of 8‐hydroxy‐2‐deoxyguanosine, a marker of oxidative damage to DNA in the plasma, urine and CSF of sporadic ALS patients and increased numbers of point mutations in mtDNA of ALS spinal cord tissue. There is mitochondrial vacuolization in transgenic mouse models of ALS. We found substantial evidence for mitochondrial dysfunction in Huntington's Disease (HD). In HD postmortem brain tissue, there are significant reductions in complex 2, 3 activity. We also demonstrated increased brain lactate concentrations as well as reduced phosphocreatine to inorganic phosphate ratio in the resting muscle of patients with HD. More recent studies have demonstrated that there is abnormal depolarization of mitochondria of HD lymphoblasts, which directly correlates with CAG repeat length. There are reductions in ATP production in muscle are both presymptomatic and symptomatic HD patients. Transgenic mouse models of HD show significant reductions in N‐acetylaspartate concentrations, which precede the onset of neuronal degeneration. We investigated a number of therapeutic interventions in both transgenic mouse models of ALS and HD. In transgenic ALS mice we found that oral administration of creatine dose‐dependently extends survival and reduces the neuronal degeneration in the spinal cord. We found modest protection with ginkgo biloba and lipoic acid. In the HD mice we found significant improvement with oral administration of creatine in two different transgenic mouse models. Creatine not only extended survival but it also improved motor performance, delayed weight loss and attenuated striatal atrophy. Creatine significantly attenuated reductions in N‐acetylaspartate concentrations as assessed using magnetic resonance spectroscopy. We also found significant neuroprotective effects with dichloroacetate, which stimulates pyruvate dehydrogenase. These findings implicate bioenergetic dysfunction in transgenic mouse models of both ALS and HD, and they suggest several novel therapeutic strategies aimed at energy replenishment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call