Abstract

The butyrate-oxidizing, proton-reducing, obligately anaerobic bacterium NSF-2 was grown in batch cocultures with either the hydrogen-oxidizing bacterium Methanospirillum hungatei PM-1 or Desulfovibrio sp. strain PS-1. Metabolism of butyrate occurred in two phases. The first phase exhibited exponential growth kinetics (phase a) and had a doubling time of 10 h. This value was independent of whether NSF-2 was cultured with a methanogen or a sulfate reducer and likely represents the maximum specific growth rate of NSF-2. This exponential growth phase was followed by a second phase with a nearly constant rate of degradation (phase b) which dominated the time course of butyrate degradation. The specific activity of H(2) uptake by the hydrogen-oxidizing bacterium controlled the bioenergetic conditions of metabolism in phase b. During this phase both the Gibbs free energy (DeltaG') and the butyrate degradation rate (v) were greater for NSF-2-Desulfovibrio sp. strain PS-1 (DeltaG' = -17.0 kJ/mol; v = 0.20 mM/h) than for NSF-2-M. hungatei PM-1 (DeltaG' = -3.8 kJ/mol, v = 0.12 mM/h). The DeltaG' value remained stable and characteristic of the two hydrogen oxidizers during phase b. The stable DeltaG' resulted from the close coupling of the rates of butyrate and H(2) oxidation. The addition of 2-bromoethanesulfonate to a NSF-2-methanogen coculture resulted in the total inhibition of butyrate degradation; the inhibition was relieved when Desulfovibrio sp. strain PS-1 was added as a new H(2) sink. When the specific activity of H(2) consumption was increased by adding higher densities of the Desulfovibrio sp. to 2-bromoethanesulfonate-inhibited NSF-2-methanogen cocultures, lower H(2) pool sizes and higher rates of butyrate degradation resulted. Thus, it is the kinetic parameters of H(2) consumption, not the type of H(2) consumer per se, that establishes the thermodynamic conditions which in turn control the rate of fatty acid degradation. The bioenergetic homeostasis we observed in phase b was a result of the kinetics of the coculture members and the feedback inhibition by hydrogen which prevents butyrate degradation rates from reaching their theoretical V(max).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.