Abstract
The aim of this work was to enhance the efficiency of a bioelectrochemical denitrification process using a biocathode of carbon felt (CF)/multiwall carbon nanotube (MWCNT) composite. The efficiency of the bioelectrochemical denitrification was assessed as the function of various operational parameters, such as ORP, pH, current density, retention time and nitrate concentrations. Scanning electron microscope (SEM) images of the biocathode surfaces revealed a homogeneous distribution of the MWCNT on the CF matrix. Optimum ORP, pH, current density and retention time were −100 mV, 7.0, 15 mA/cm2 and 6 h, respectively. The highest nitrate removal efficiency at the optimum condition was 92.7% for CF/MWCNT. The reduction time for achieving the nitrate standard using CF/MWCNT was 4 h. It is proposed that the prepared nanocomposite will have the best biocathode properties in the bioelectrochemistry denitrification experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.