Abstract
Membrane-bound [NiFe]-hydrogenase from Hydrogenovibrio marinus (HmMBH) is an O2-tolerant enzyme and allows direct electron transfer (DET)-type bioelectrocatalysis for the H2 oxidation. Very fast interfacial electron transfer occurs between the [NiFe]-active site of HmMBH and the electrode, and the potential dependence of the steady-state DET-type catalytic current has been analyzed on a thermodynamic model of a two-step one-electron transfer to get a Pourbaix diagram of the catalytic center. A reversible and oxidative inactivation that occurs when the [NiFe]-hydrogenases are suffering from the oxidative stress at high electrode potentials or high solution potentials has been kinetically analyzed for the time-dependence of the steady-state catalytic current as a measure. The kinetic analysis has shown that the rate-determining step of the oxidative inactivation is not electrochemical but chemical process and that the rate of the reductive reactivation is determined by the electrochemical process. The observed catalytic waves, especially the dependence of the waves on the scan rate and the hydrogen concentration, have been well reproduced by simulation with the thermodynamic and kinetic parameters evaluated here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.