Abstract

This study presents an enzymatic bioanode fabricated with fructose dehydrogenase and a polyaniline film to construct a single-compartment fructose biofuel cell. The enzymatic bioanode provided fructose oxidation current, which accompanied the electron transfer between the heme c moiety of fructose dehydrogenase and polyaniline. Characterization of the bioanode at a pH of 4.5 indicated an onset potential of −0.1V (vs. Ag/AgCl) with respect to the redox potential corresponding to heme c of fructose dehydrogenase as well as high current densities for fructose oxidation of 1.0±0.1mA/cm2 at +0.50V (vs. Ag/AgCl). A single-compartment fructose biofuel cell was constructed by use of the bioanode together with an enzymatic biocathode fabricated with laccase and polythiophene copolymer film. The fructose biofuel cell possessed an open-circuit potential of 0.55V with an associated short-circuit current of 1.4±0.2mA/cm2. In addition, the maximum power density of the biofuel cell was 0.36±0.04mW/cm2 at a cell voltage of 0.3V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.