Abstract
Team handball is a highly dynamic sport where physical demands differ between categories and roles. Thus, physical characteristics are fundamental for the final performance. This study aims to (a) characterize a sample of young male and female elite team handball players with a non-athletic reference population; (b) to generate their 50%, 75%, and 95% percentiles of the bioelectrical variables. The study included 55 young elite team handball players (Males, n = 37, age = 17.0 ± 1.2 yrs, height = 185.8 ± 7.3 cm, weight = 82.0 ± 11.0 kg, body mass index (BMI) = 23.7 ± 2.5; Females, n = 18, age = 17.8 ± 0.9 yrs, height = 171.2 ± 6.4 cm, weight = 67.4 ± 7.2 kg, BMI = 23.0 ± 2.0). Height and bioelectrical variables were assessed in a state of euhydration and standard conditions. Bioelectrical impedance vector analysis (BIVA) was used to characterize the bioelectrical vector (BIA vector) distribution pattern for each group. Compared to the reference values, BIA vector showed statistically significant differences in males U17 (n = 19, T2 = 51.0, p < 0.0001), males U19 (n = 18, T2 = 82.0, p < 0.0001) and females U19 (n = 18, T2 = 85.8, p < 0.0001). Male groups were also bioelectrically different (T2 = 13.7, p = 0.0036). BIVA showed specific bioelectrical characteristics in young male and female elite handball players. This study provides an original data set of bioelectrical impedance reference values of young male and female elite team handball players. Our result might help to interpret individual bioimpedance vectors and define target regions for young handball players.
Highlights
Apart from Body mass index (BMI) and FM, significant differences emerged for the investigated variables among the three groups
This study indicates that young male and female elite team handball players represent a specific population, with bioelectrical impedance values that differ from the general age-matched populations
BMI was similar between the three groups, females showed lower FFMI and higher FMI
Summary
Previous studies indicated that handball is characterized by high-intensity movements and strategic and technical actions, such as sprints, stops, changes of direction, throws on goal, passes, jumps and body tackles, interspersed with actions necessary for recovery, like walking and standing [1,2]. This implies that handball highly taxes both the cardiovascular and neuromuscular systems, stimulating favorable adaptations regarding oxygen utilization and skeletal muscle capacities [3,4,5]. The relative workload of team handball is about 70–80% of the maximal oxygen uptake (VO2 max), and the total distance covered per full-time match (60 min) ranges between 3900 to 4700 m, of which about
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Environmental Research and Public Health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.