Abstract
Background/Objectives: To obtain bioelectrical data to assess nutritional status for extremely low-birth-weight (ELBW) infants upon reaching term-corrected age. Methods: A descriptive, observational, prospective, and single-center study, which included ELBW preterm infants was performed. The study variables collected were gestational age, sex, and anthropometry at birth and at term-corrected age. Bioelectrical impedance vector analysis (BIVA) was performed by a phase-sensitive device (BIA 101 BIVA PRO AKERN srl, Pisa, Italy). The components of the impedance vector—resistance (R) and reactance (Xc)—were normalized for body height (H). For each subject, the measurement was taken between the 36th and 44th weeks of postmenstrual age (PMA). A semi-quantitative analysis of body composition was performed using the vector modality of the BIA. Using the RXc graph method, the bivariate 95% confidence intervals of the mean vectors were constructed. From the bivariate normal distribution of R/H and Xc/H, the bivariate 95%, 75%, and 50% tolerance intervals for this cohort were drawn. The individual impedance vectors were compared with the distribution of the vectors from other populations. Results: 85 ELBW infants (40 male, 45 female) were included, with a mean gestational age at birth of 26 + 6 weeks (±1.76). Mean R/H was 870.33 (±143.21) Ohm/m and Xc/H was 86.84 (±19.05) Ohm/m. We found differences in the bioelectrical data with regard to gender, with resistance values being significantly higher in females. Our ellipses align closely with those from other term neonatal cohorts. Conclusions: Bioelectrical data and the confidence and tolerance ellipses of an ELBW infant cohort are presented and can be used as a reference standard for nutritional assessment at discharge.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.